Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 9(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573035

RESUMO

The risk of generation of acid drainages in the tailings of the Pan de Azúcar mine that closed its activities more than three decades ago, was evaluated through biooxidation studies using iron- and sulfur-oxidizing extremophilic leaching consortia. Most of tailings showed a high potential for generating acid drainage, in agreement with the results from net acid generation (NAG) assays. In addition, molecular analysis of the microbial consortia obtained by enrichment of the samples, demonstrated that native leaching microorganisms are ubiquitous in the area and they seemed to be more efficient in the biooxidation of the tailings than the collection microorganisms. The acid drainages detected at the site and those formed by oxidation of the tailings, produced a significant ecotoxicological effect demonstrated by a bioassay. These drainages, even at high dilutions, could seriously affect a nearby Ramsar site (Laguna de Pozuelos) that is connected to the Pan de Azúcar mine through a hydrological route (Cincel River).

2.
J Environ Manage ; 207: 70-79, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154010

RESUMO

Reactive Black 5, RB5, has been used as a model azo dye to evaluate the removal efficiency of sorption on Macrocystis pyrifera biomass (Mpyr) and commercial zerovalent iron nanoparticles (nZVI) in individual and combined treatments. The best conditions for the treatment with the isolated materials were first determined, and then, in series and combined treatments were performed under these conditions, achieving removal efficiencies higher than 80% of the initial dye concentration. Strengths and weaknesses of all removal strategies (individual, in series and combined) are analyzed regarding the application on real effluents. Mpyr efficiently adsorbed RB5, but also increased the total organic content by partial dissolution of components of the algal biomass. Removal experiments with commercial nZVI were also efficient but liberated Fe to the solution, and sulfanilic acid was observed after the treatment as a product of RB5 degradation. In contrast, after the Mpyr treatment, no sulfanilic acid was detected, suggesting that sulfanilic acid is efficiently adsorbed by the biomass. The best condition was the integrated use of Mpyr and nZVI, with a remarkable removal efficiency (69-80%) obtained after only 1 h of treatment. Finally, nZVI were successfully immobilized in Mpyr, and the hybrid material was used to remove RB5 in continuous flow experiments at pH 3, obtaining a removal capacity of 39.9 mg RB5 g-1 after a total processed volume of 630 mL of [RB5]0 = 100 mg L-1.


Assuntos
Macrocystis , Nanopartículas , Naftalenossulfonatos , Purificação da Água , Biomassa , Ferro , Poluentes Químicos da Água
3.
Electron. j. biotechnol ; 16(3): 6-6, May 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-684004

RESUMO

Background: The increased industrial activity has resulted in the discharge of large amount of pollutants including non-degradable metals into the environment. Chromium is produced in several industrial processes and it can be found in the environment in two stable oxidation states, Cr(VI) and Cr(III). Cr(VI) is more hazardous due to its carcinogenic and mutagenic effects on living organisms. Although much less toxic, Cr(III) can also exert genotoxic effects under prolonged or severe exposure. It can be separated from the solution by precipitation but biosorption using brown algae seems to be an effective and sustainable treatment technique owing to its cost-effectiveness and environmental friendly characteristics. Macrocystis pyrifera and Undaria pinnatifida are two marine brown macroalgae with high capability of removing heavy metals including Cr(III) in batch mode of operation. In this work packed bed biosorption of Cr(III) by M. pyrifera and U. pinnatifida biomasses was evaluated. Results: The shapes of the breakthrough curves were rather different for each biomaterial. Parameters like the breakthrough time (t b) andzone mass transfer (MTZ) showed that U. pinnatifida has greater affinity for Cr(III). The maximum adsorption capacity at the exhaustion operating time (t e) demonstrated that M. pyrifera has higher retention capacity of Cr(III). The experimental data were fitted to Thomas, Yoon-Nelson and Dose-Response models. The best correlation coefficient (0.94 or 0.96) was obtained with Dose-Response that accurately describes the uptake behaviour of Cr(III) on the seaweed biomasses under different experimental conditions. The FT-IR spectra evidenced that Cr(III) adsorption occurred mainly by interaction between metal and carboxylate groups present on both the seaweed surfaces. Conclusions: M. pyrifera and U. pinnatifida biomasses are efficient biosorbents for Cr(III) adsorption under a continuous mode of operation although differences between uptake capacities suggest different mechanisms involved in the biosorption.


Assuntos
Metais Pesados/metabolismo , Macrocystis/metabolismo , Undaria/metabolismo , Poluentes Industriais , Cromo/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Biomassa , Adsorção , Phaeophyceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...